WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#12 Key

Problem 1. Consider the following initial-boundary value problem for the heat equation

$$
\begin{aligned}
u_{t}-\Delta u & =f \in L_{2}\left(Q_{T}\right) \\
u & =0 \text { in } \Sigma=(0, T) \times \partial \Omega \\
u(0, \cdot) & =g \in L_{2}(\Omega)
\end{aligned}
$$

a.) Construct a sequence of Faedo-Galerkin approximations, that is a sequence of functions $u_{m}:[0, T] \rightarrow \stackrel{H}{H}^{1}(\Omega)$ of the form $u_{m}(t)=\sum_{k=1}^{m} d_{m}^{k}(t) w_{k}$ where the coefficients d_{m}^{k} satisfy

$$
d_{m}^{k}(0)=\left(g, w_{k}\right)_{L_{2}(\Omega)} \quad \text { and } \quad\left(u_{m}^{\prime}, w_{k}\right)_{L_{2}(\Omega)}+\left(\nabla u_{m}, \nabla w_{k}\right)_{L_{2}(\Omega)}=\left(f, w_{k}\right)_{L_{2}(\Omega)}
$$

for $k=1,2, \ldots, m$, where w_{k} are the orthonormal eigenfunctions of the Dirichlet Laplacian in Ω with respect to the L_{2} inner product.
Solution. Inserting $u_{m}(t)=\sum_{l=1}^{m} d_{m}^{l}(t) w_{k}$ into the identity

$$
\left(u_{m}^{\prime}, w_{k}\right)_{L_{2}(\Omega)}+\left(\nabla u_{m}, \nabla w_{k}\right)_{L_{2}(\Omega)}=\left(f, w_{k}\right)_{L_{2}(\Omega)}
$$

gives because of the othonormality of the Dirichlet eigenfunctions

$$
\frac{d}{d t} d_{m}^{k}(t)+\lambda_{k} d_{m}^{k}(t)=\left(f(t, \cdot), w_{k}\right)_{L_{2}(\Omega)}=: F(t)
$$

Note that with the Cauchy-Schwarz inequality and Hölder's inequality

$$
\begin{aligned}
& \int_{0}^{T}|F(t)| d t=\int_{0}^{T}\left|\int_{\Omega} f(t, x) w_{k}(x) d x\right| d t \leq \int_{0}^{T}\|f(t, \cdot)\|_{L_{2}(\Omega)} d t\left\|w_{k}\right\|_{L_{2}(\Omega)} \\
& \leq \int_{0}^{T}\|f(t, \cdot)\|^{2} d t\left\|w_{k}\right\|_{L_{2}(\Omega)} \leq\left\|w_{k}\right\|_{L_{2}(\Omega)}\left(\int_{0}^{T}\|f(t, \cdot)\|_{L_{2}(\Omega)}^{2}\right)^{1 / 2} \sqrt{T} \\
& \leq \sqrt{T}\|f\|_{L_{2}\left(Q_{T}\right)}\left\|w_{k}\right\|_{L_{2}(\Omega)}
\end{aligned}
$$

which shows that the right hand side in the ODE above is in $L_{1}(0, T)$. Setting $\left(g, w_{k}\right)_{L_{2}(\Omega)}=$ g_{k}, the unique solution to this ODE is given by

$$
d_{m}^{k}(t)=e^{-\lambda_{k} t} g_{k}+\int_{0}^{t} e^{-\lambda_{k}(t-s)} F(s) d s
$$

which is an absolutely continuous function. In conclusion, one obtains $u_{m} \in W_{1}^{1}\left(0, T ; \dot{H}^{1}(\Omega)\right)$.
b.) Establish the apriori estimate

$$
\max _{t \in[0, T]}\left\|u_{m}(t)\right\|_{L_{2}(\Omega)}+\left\|u_{m}\right\|_{L_{2}\left(0, T ; H^{1}(\Omega)\right)}+\left\|u_{m}^{\prime}\right\|_{L_{2}\left(0, T ; H^{-1}(\Omega)\right)} \leq C\left(\|f\|_{L_{2}\left(Q_{T}\right)}+\|g\|_{L_{2}(\Omega)}\right)
$$

where C is a positive constant which does not depend on m, g, and f.

Solution. Multiplying each identity

$$
\left(u_{m}^{\prime}, w_{k}\right)_{L_{2}(\Omega)}+\left(\nabla u_{m}, \nabla w_{k}\right)_{L_{2}(\Omega)}=\left(f, w_{k}\right)_{L_{2}(\Omega)}
$$

by d_{m}^{k} and adding from $k=1,2, \ldots$, one obtains, after integration over $(0, t)$ for some $0 \leq t \leq T$

$$
\int_{0}^{t}\left(u_{m}^{\prime}, u_{m}\right)_{L_{2}(\Omega)} d s+\int_{0}^{t}\left(\nabla u_{m}, \nabla u_{m}\right)_{L_{2}(\Omega)} d s=\int_{0}^{t}\left(f, u_{m}\right)_{L_{2}(\Omega)} d s
$$

Noting that $2\left(u_{m}^{\prime}, u_{m}\right)_{L_{2}(\Omega)}=\frac{d}{d t}\left\|u_{m}\right\|_{L_{2}(\Omega)}^{2}$ and using the Cauchy-Schwarz inequality on the right-hand side gives

$$
\frac{1}{2}\left\|u_{m}(t)\right\|_{L_{2}(\Omega)}^{2}-\frac{1}{2}\left\|u_{m}(0)\right\|_{L_{2}(\Omega)}^{2}+\left\|u_{m}\right\|_{L_{2}\left(0, t ; \dot{H}^{1}(\Omega)\right)}^{2} \leq\|f\|_{L_{2}\left(Q_{T}\right)^{2}}\left\|u_{m}\right\|_{L_{2}\left(Q_{T}\right)}
$$

for all $0 \leq t \leq T$. Hence, for all $\varepsilon>0$ one gets

$$
\begin{aligned}
\sup _{0<t<T} \frac{1}{2}\left\|u_{m}(t)\right\|_{L_{2}(\Omega)}^{2}+\left\|u_{m}\right\|_{L_{2}\left(0, T ; H^{1}(\Omega)\right)}^{2} & \leq \frac{1}{4 \varepsilon}\|f\|_{L_{2}\left(Q_{T}\right)^{2}}^{2}+\varepsilon\left\|u_{m}\right\|_{L_{2}\left(Q_{T}\right)}^{2}+\frac{1}{2}\left\|u_{m}(0)\right\|_{L_{2}(\Omega)}^{2} \\
& \leq \frac{1}{4 \varepsilon} \left\lvert\, f\left\|_{L_{2}\left(Q_{T}\right)^{2}}^{2}+\varepsilon C\right\| u_{m}\left\|_{L_{2}\left(0, T ; \dot{H}^{1}(\Omega)\right)}^{2}+\frac{1}{2}\right\| g\right. \|_{L_{2}(\Omega)}^{2}
\end{aligned}
$$

where one uses also the Poincaré inequality and

$$
u_{m}(0)=\sum_{k=1}^{m} g_{k} w_{k} .
$$

Choosing $\varepsilon=1 /(2 C)$ allows us to move the second term on the right-hand side into the left-hand side. Then

$$
\begin{equation*}
\sup _{0<t<T}\left\|u_{m}(t)\right\|_{L_{2}(\Omega)}^{2}+\left\|u_{m}\right\|_{L_{2}\left(0, T ; \hat{H}^{1}(\Omega)\right)}^{2} \leq C \mid f\left\|_{L_{2}\left(Q_{T}\right)^{2}}^{2}+\right\| g \|_{L_{2}(\Omega)}^{2} . \tag{1}
\end{equation*}
$$

Finally, note that

$$
\begin{aligned}
\left\|u_{m}^{\prime}\right\|_{L_{2}\left(0, T ; H^{-1}(\Omega)\right)} & =\sup _{\|v\|_{L_{2}\left(0, T ; \dot{H}^{1}(\Omega)\right)}=1}\left|\left(u_{m}^{\prime}, v\right)_{L_{2}\left(Q_{T}\right)}\right| \\
& =\sup \left|-\left(\nabla u_{m}, \sum_{k=1}^{m} \beta_{k}(t) \nabla w_{k}\right)_{L_{2}\left(Q_{T}\right)}+\left(f, \sum_{k=1}^{m} \beta(t) w_{k}\right)_{L_{2}\left(Q_{T}\right)}\right|
\end{aligned}
$$

where the sup is taken over all continuous functions β_{k} such that

$$
\int_{0}^{T} \sum_{k=1}^{m}\left|\beta_{k}(t)\right|^{2} d t=1
$$

The sum terminates at m since u_{m} is a linear combination of the first m basis functions. Using the Cauchy-Schwarz inequality gives

$$
\left\|u_{m}^{\prime}\right\|_{L_{2}\left(0, T ; H^{-1}(\Omega)\right)} \leq\left\|u_{m}\right\|_{L_{2}\left(0, T ; \tilde{H}^{1}(\Omega)\right)}+\|f\|_{L_{2}\left(Q_{T}\right)},
$$

and the proof is finished by inserting the last inequality into (1).
Problem 2. Suppose that $u \in L_{2}\left(0, T ; \dot{H}^{1}(\Omega)\right)$ satisfies $\partial u / \partial t \in L_{2}\left(0, T ; H^{-1}(\Omega)\right)$. Prove that $u \in C\left([0, T], L_{2}(\Omega)\right)$.

Proof. For $\varepsilon, \delta>0$ consider the regularization $u^{(\varepsilon)}$ and $u^{(\delta)}$ of u in time and space. In order to use the regularization as introduced in Chapter 3 the functions u is extended by zero outside of Ω and outside of the interval $[0, T]$. Then, using the duality between the Sobolev spaces $\stackrel{\circ}{H}^{1}(\Omega)$ and $H^{-1}(\Omega)$, we have

$$
\begin{aligned}
\frac{d}{d t}\left\|u^{(\varepsilon)}(\tau)-u^{(\delta)}(\tau)\right\|_{L_{2}(\Omega)} & =2\left(u^{(\varepsilon)}(\tau)-u^{(\delta)}(\tau), \frac{d}{d t} u^{(\varepsilon)}(\tau)-\frac{d}{d t} u^{(\delta)}(\tau)\right) \\
& \leq\left\|u^{(\varepsilon)}(\tau)-u^{(\delta)}(\tau)\right\|_{H^{1}(\Omega)}^{2}+\left\|\frac{d}{d t} u^{(\varepsilon)}(\tau)-\frac{d}{d t} u^{(\delta)}(\tau)\right\|_{H^{-1}(\Omega)}^{2}
\end{aligned}
$$

Integrating this identity over the interval $(s, t) \subset[0, T]$ one obtains

$$
\begin{aligned}
\left\|u^{(\varepsilon)}(t)-u^{(\delta)}(t)\right\|_{L_{2}(\Omega)} \leq & \left\|u^{(\varepsilon)}(s)-u^{(\delta)}(s)\right\|_{L_{2}(\Omega)} \\
& +\left\|u^{(\varepsilon)}-u^{(\delta)}\right\|_{L_{2}\left(0, T ; \dot{H}^{1}(\Omega)\right)}^{2}+\left\|\frac{d}{d t} u^{(\varepsilon)}-\frac{d}{d t} u^{(\delta)}\right\|_{L_{2}\left(0, T ; H^{-1}(\Omega)\right)}^{2}
\end{aligned}
$$

Choose now $s \in(0, T)$ such that $u^{(\varepsilon)}(s) \rightarrow u(s)$ in $L_{2}(\Omega)$ as $\varepsilon \rightarrow 0$. This can be done since convergence in $L_{2}\left(0, T, \dot{H}^{1}(\Omega)\right)$ implies convergence almost everywhere with respect to t. Then the identity above shows that $u(\varepsilon)$ is a Cauchy sequence in the function space $C\left([0, T], L_{2}(\Omega)\right)$. Hence, $u^{(\varepsilon)} \rightarrow v \in C\left([0, T], L_{2}(\Omega)\right)$ and $u=v$ almost everywhere in t in $L_{2}(\Omega)$ for $t \in[0, T]$.

Problem 3. Consider the semilinear elliptic boundary-value problem

$$
\begin{aligned}
-\Delta u+b(\nabla u)=f & \text { in } \Omega, \\
u=0 & \text { in } \partial \Omega .
\end{aligned}
$$

Use Banach's fixed point theorem to show that there exists a unique solution $u \in H^{2}(\Omega) \cap$ $\dot{H}^{1}(\Omega)$ provided $f \in L_{2}(\Omega)$ and $b: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is Lipschitz continuous with a small enough Lipschitz constant.

Proof. Suppose that $u \in \grave{H}^{1}(\Omega)$ and consider the linear elliptic boundary value problem

$$
\begin{aligned}
-\Delta w & =-b(\nabla u)+f \quad \text { in } \Omega, \\
u & =0 \quad \text { in } \partial \Omega .
\end{aligned}
$$

Since b is Lipschitz, we know that $|b(p)| \leq C(1+|p|)$ for all $p \in \mathbb{R}^{d}$. Hence

$$
\int_{\Omega}|b(\nabla u)|^{2} d x \leq C^{2} \int_{\Omega}(1+|\nabla u|)^{2} \leq 2 C^{2}\left(1+\|u\|_{\dot{H}^{1}(\Omega)}^{2}\right)
$$

which shows that $b(\nabla u) \in L_{2}(\Omega)$. Using the theory from Chapter 2, one sees that the linear problem above has a unique solution in $w \in \grave{H}^{1}(\Omega) \cap H^{2}(\Omega)$. Introduce a non-linear operator $A: \stackrel{\circ}{H}^{1}(\Omega) \rightarrow \dot{H}^{1}(\Omega)$ by setting $A u=w$. We will show that this operator is a contraction provided the Lipschitz constant L of b is sufficiently small. Let $A \tilde{u}=\tilde{w}$ and observe that

$$
(\nabla w-\nabla \tilde{w}, \nabla v)_{L_{2}(\Omega)}=-(b(\nabla u)-b(\nabla \tilde{u}), v)_{L_{2}(\Omega)} \quad \text { for all } v \in \dot{H}^{1}(\Omega)
$$

Compute, with $v=w-\tilde{w}$ in the identity above, using the Cauchy-Schwarz inequality

$$
\|w-\tilde{w}\|_{\tilde{H}^{1}(\Omega)}^{2} \leq\|b(\nabla u)-b(\nabla \tilde{u})\|_{L_{2}(\Omega)}\|w-\tilde{w}\|_{L_{2}(\Omega)} \leq C L\|u-\tilde{u}\|_{\tilde{H}^{1}(\Omega)}\|w-\tilde{w}\|_{\tilde{H}^{1}(\Omega)},
$$

where C is the constant in Poincaré's inequality. Hence,

$$
\|w-\tilde{w}\|_{\dot{H}^{1}(\Omega)} \leq C L\|u-\tilde{u}\|_{\tilde{H}^{1}(\Omega)}
$$

which proves that A is a contraction as long as $C L<1$. By Banach's Fixed Point Theorem, the operator A has a unique fixed point $u \in H^{1}(\Omega)$ which is then the only possible solution to the semilinear problem above. Note that elliptic regularity implies that $u \in H^{2}(\Omega)$.

