
WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Homework #12 Key

Problem 1. Consider the following initial-boundary value problem for the heat equation

ut −∆u = f ∈ L2(QT )

u = 0 in Σ = (0, T )× ∂Ω

u(0, ·) = g ∈ L2(Ω) .

a.) Construct a sequence of Faedo-Galerkin approximations, that is a sequence of func-

tions um : [0, T ] → H̊1(Ω) of the form um(t) =
∑m

k=1 d
k
m(t)wk where the coefficients dkm

satisfy

dkm(0) = (g, wk)L2(Ω) and (u′m, wk)L2(Ω) + (∇um,∇wk)L2(Ω) = (f, wk)L2(Ω)

for k = 1, 2, ...,m, where wk are the orthonormal eigenfunctions of the Dirichlet Laplacian
in Ω with respect to the L2 inner product.

Solution. Inserting um(t) =
∑m

l=1 d
l
m(t)wk into the identity

(u′m, wk)L2(Ω) + (∇um,∇wk)L2(Ω) = (f, wk)L2(Ω)

gives because of the othonormality of the Dirichlet eigenfunctions

d

dt
dkm(t) + λkd

k
m(t) = (f(t, ·), wk)L2(Ω) =: F (t) .

Note that with the Cauchy-Schwarz inequality and Hölder’s inequality∫ T

0

|F (t)|dt =

∫ T

0

∣∣∣∣∫
Ω

f(t, x)wk(x) dx

∣∣∣∣ dt ≤ ∫ T

0

‖f(t, ·)‖L2(Ω)dt ‖wk‖L2(Ω)

≤
∫ T

0

‖f(t, ·)‖2 dt ‖wk‖L2(Ω) ≤ ‖wk‖L2(Ω)

(∫ T

0

‖f(t, ·)‖2
L2(Ω)

)1/2√
T

≤
√
T‖f‖L2(QT )‖wk‖L2(Ω)

which shows that the right hand side in the ODE above is in L1(0, T ). Setting (g, wk)L2(Ω) =
gk, the unique solution to this ODE is given by

dkm(t) = e−λktgk +

∫ t

0

e−λk(t−s)F (s) ds

which is an absolutely continuous function. In conclusion, one obtains um ∈ W 1
1 (0, T ; H̊1(Ω)).

b.) Establish the apriori estimate

max
t∈[0,T ]

‖um(t)‖L2(Ω) + ‖um‖L2(0,T ;H̊1(Ω)) + ‖u′m‖L2(0,T ;H−1(Ω)) ≤ C
(
‖f‖L2(QT ) + ‖g‖L2(Ω)

)
,

where C is a positive constant which does not depend on m, g, and f .
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Solution. Multiplying each identity

(u′m, wk)L2(Ω) + (∇um,∇wk)L2(Ω) = (f, wk)L2(Ω)

by dkm and adding from k = 1, 2, ..., one obtains, after integration over (0, t) for some
0 ≤ t ≤ T ∫ t

0

(u′m, um)L2(Ω)ds+

∫ t

0

(∇um,∇um)L2(Ω)ds =

∫ t

0

(f, um)L2(Ω)ds .

Noting that 2(u′m, um)L2(Ω) = d
dt
‖um‖2

L2(Ω) and using the Cauchy-Schwarz inequality on
the right-hand side gives

1

2
‖um(t)‖2

L2(Ω) −
1

2
‖um(0)‖2

L2(Ω) + ‖um‖2
L2(0,t;H̊1(Ω))

≤ ‖f‖L2(QT )2‖um‖L2(QT )

for all 0 ≤ t ≤ T . Hence, for all ε > 0 one gets

sup
0<t<T

1

2
‖um(t)‖2

L2(Ω) + ‖um‖2
L2(0,T ;H̊1(Ω))

≤ 1

4ε
‖f‖2

L2(QT )2 + ε‖um‖2
L2(QT ) +

1

2
‖um(0)‖2

L2(Ω)

≤ 1

4ε
|f‖2

L2(QT )2 + εC‖um‖2
L2(0,T ;H̊1(Ω))

+
1

2
‖g‖2

L2(Ω)

where one uses also the Poincaré inequality and

um(0) =
m∑
k=1

gkwk .

Choosing ε = 1/(2C) allows us to move the second term on the right-hand side into the
left-hand side. Then

(1) sup
0<t<T

‖um(t)‖2
L2(Ω) + ‖um‖2

L2(0,T ;H̊1(Ω))
≤ C|f‖2

L2(QT )2 + ‖g‖2
L2(Ω) .

Finally, note that

‖u′m‖L2(0,T ;H−1(Ω)) = sup
‖v‖L2(0,T ;H̊1(Ω))=1

|(u′m, v)L2(QT )|

= sup

∣∣∣∣∣∣−
(
∇um,

m∑
k=1

βk(t)∇wk

)
L2(QT )

+

(
f,

m∑
k=1

β(t)wk

)
L2(QT )

∣∣∣∣∣∣
where the sup is taken over all continuous functions βk such that∫ T

0

m∑
k=1

|βk(t)|2dt = 1 .

The sum terminates at m since um is a linear combination of the first m basis functions.
Using the Cauchy-Schwarz inequality gives

‖u′m‖L2(0,T ;H−1(Ω)) ≤ ‖um‖L2(0,T ;H̊1(Ω)) + ‖f‖L2(QT ) ,

and the proof is finished by inserting the last inequality into (1).

Problem 2. Suppose that u ∈ L2(0, T ; H̊1(Ω)) satisfies ∂u/∂t ∈ L2(0, T ;H−1(Ω)). Prove
that u ∈ C([0, T ], L2(Ω)).
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Proof. For ε, δ > 0 consider the regularization u(ε) and u(δ) of u in time and space. In
order to use the regularization as introduced in Chapter 3 the functions u is extended by
zero outside of Ω and outside of the interval [0, T ]. Then, using the duality between the

Sobolev spaces H̊1(Ω) and H−1(Ω), we have

d

dt
‖u(ε)(τ)− u(δ)(τ)‖L2(Ω) = 2

(
u(ε)(τ)− u(δ)(τ),

d

dt
u(ε)(τ)− d

dt
u(δ)(τ)

)
≤ ‖u(ε)(τ)− u(δ)(τ)‖2

H̊1(Ω)
+

∥∥∥∥ ddtu(ε)(τ)− d

dt
u(δ)(τ)

∥∥∥∥2

H−1(Ω)

.

Integrating this identity over the interval (s, t) ⊂ [0, T ] one obtains

‖u(ε)(t)− u(δ)(t)‖L2(Ω) ≤ ‖u(ε)(s)− u(δ)(s)‖L2(Ω)

+ ‖u(ε) − u(δ)‖2
L2(0,T ;H̊1(Ω))

+

∥∥∥∥ ddtu(ε) − d

dt
u(δ)

∥∥∥∥2

L2(0,T ;H−1(Ω))

Choose now s ∈ (0, T ) such that u(ε)(s) → u(s) in L2(Ω) as ε → 0. This can be done

since convergence in L2(0, T, H̊1(Ω)) implies convergence almost everywhere with respect
to t. Then the identity above shows that u(ε) is a Cauchy sequence in the function space
C([0, T ], L2(Ω)). Hence, u(ε) → v ∈ C([0, T ], L2(Ω)) and u = v almost everywhere in t in
L2(Ω) for t ∈ [0, T ]. �

Problem 3. Consider the semilinear elliptic boundary-value problem

−∆u+ b(∇u) = f in Ω ,

u = 0 in ∂Ω .

Use Banach’s fixed point theorem to show that there exists a unique solution u ∈ H2(Ω)∩
H̊1(Ω) provided f ∈ L2(Ω) and b : Rd → R is Lipschitz continuous with a small enough
Lipschitz constant.

Proof. Suppose that u ∈ H̊1(Ω) and consider the linear elliptic boundary value problem

−∆w = −b(∇u) + f in Ω ,

u = 0 in ∂Ω .

Since b is Lipschitz, we know that |b(p)| ≤ C(1 + |p|) for all p ∈ Rd. Hence∫
Ω

|b(∇u)|2 dx ≤ C2

∫
Ω

(1 + |∇u|)2 ≤ 2C2
(

1 + ‖u‖2
H̊1(Ω)

)
.

which shows that b(∇u) ∈ L2(Ω). Using the theory from Chapter 2, one sees that the

linear problem above has a unique solution in w ∈ H̊1(Ω)∩H2(Ω). Introduce a non-linear

operator A : H̊1(Ω) → H̊1(Ω) by setting Au = w. We will show that this operator is a
contraction provided the Lipschitz constant L of b is sufficiently small. Let Aũ = w̃ and
observe that

(∇w −∇w̃,∇v)L2(Ω) = −(b(∇u)− b(∇ũ), v)L2(Ω) for all v ∈ H̊1(Ω) ,

Compute, with v = w − w̃ in the identity above, using the Cauchy-Schwarz inequality

‖w − w̃‖2
H̊1(Ω)

≤ ‖b(∇u)− b(∇ũ)‖L2(Ω)‖w − w̃‖L2(Ω) ≤ CL‖u− ũ‖H̊1(Ω)‖w − w̃‖H̊1(Ω) ,
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where C is the constant in Poincaré’s inequality. Hence,

‖w − w̃‖H̊1(Ω) ≤ CL‖u− ũ‖H̊1(Ω)

which proves that A is a contraction as long as CL < 1. By Banach’s Fixed Point
Theorem, the operator A has a unique fixed point u ∈ H̊1(Ω) which is then the only
possible solution to the semilinear problem above. Note that elliptic regularity implies
that u ∈ H2(Ω). �


